
Research Mentoring
Dr. Carroll received his PhD. from Dr. Doering at Wesleyan University in Middletown CT. So were did Dr. Doering study?
Dr. Dale Doering studied with Dr. J. Thomas Dickinson (Washington State)
Dr. Dickinson studied with Dr. Jens Zorn (University of Michigan)
Dr. Zorn studied with Dr. Vernon W Hughes (Yale University)
Dr. Hughes studied with Dr. I.I. Rabi (Columbia University, Nobel 1944)
Dr. Rabi studied with Dr. Albert Potter Wills (Columbia University)
Dr. Wills studied with Dr. Arthur Gordon Webster (Clark University, founder of the APS)
Dr. Webster studied with Dr. Hermann von Helmholtz (Berlin)
So I guess you could say we are the great great ---great--- great great grandchildren of Dr. Helmholtz.
(Isn't google amazing!)
And the next generation? There have been more than 100 students and postdocs from 26 nations to spend time in the Carroll Research Group. I will eventually list them all, but for now here are the advanced thesis holders from the group. I am justifiably very proud of them all.
PhD: Daniel Tekleab, Scott Webster, Richard Czerw, Jiwen Liu, Nicole Levi, Faith Coldren, Jerry Kielbasa, Wanyi Nie, Yuan Li, Corey Hewitt, Alex Taylor, Greg Smith, Wenxiao Huang, Junwei Xu, Chaochao Dun, David Montgomery
MA: A. Date, P. Iyer, S. Xing, W. Wang, D. Weston, Jillian Berjke, Eric Peterson, Eric Henderson




Taking a Course from me
1. I believe that when you take a course on a subject you have made an agreement to fully engage for the sake of that subject. Some time both inside of class and out, will be dedicated wholly to its pursuit.
2. I do not use Online or Hybrid teaching models unless forced to by circumstances we can't control. To see why Read This
3. I typically use some form of tutorial system in teaching. This usually means a required weekly meeting to discuss topics in detail and go over problem solutions, either with me or with a trained tutor. Tutorials are where you become good at working problems.
4. My lectures supplement the assigned reading, they do not follow the textbook or substitute for it. You must know the information presented in both sources. Lectures present basic ideas but quickly build upon these toward modern applications and theories. They are supposed to be more advanced than the text readings.
4. Over the years I have been told that my classes are fun. They are certainly supposed to be. If you are not enjoying what you signed up for, come and see me and we will see how to make it more palatable. Physics can be an adventure, a puzzle, an accomplishment, and a comfort if you let it.
Dave Carroll


The Courses
Don't be ridiculous, of course I teach classes...
These undergraduate courses are a part of the Physics Curriculum. They are typically taught with a graded tutorial

first half Fall semester
PHY 337/637
The course introduces advanced methods in classical mechanics: Lagrangian and Hamiltonian formulations of kinematics as well as reviews non-inertial problems, non-integrable/chaotic problems and coupled oscillators within this context.
The course runs 1/2 a semester and is evaluated midterm (October).

Analytical Mechanics
second half Fall semester
PHY 339/639
A fast-paced introduction to the fields of electromagnetism as they are described through formal vector calculus methods. While the approach will use a source-theory perspective, areas of correspondence with modern quantum field theory will be emphasized.
This course runs 1/2 a semester and is evaluated endterm (December).

Electromagnetism
Spring semester
PHY 340/640
The second in the two course sequence that presents formal electromagnetism. The course is an advanced junior-level presentation, and relies heavily on the calculus of fields together with many conceptual connections to quantum mechanics. The philosophy of the class holds little back in seeking to build physical models consistent with a modern understanding of electrodynamics.

Electromagnetism
These courses are from our graduate program and they emphasize Nanoscience and Materials Physics.


Spring Semester (3)
PHY 354/654
PHY 692 Quantum Computing for Beginners
A simple introduction to the foundations and hardware of Quantum Computers It covers basic algorithms, the theory of Qubits and registers, gate structure, and the physical systems that have been achieved.
The course is presented in a simple lecture style with a lab component that emphasizes programing in Quiskit.
For old lectures and papers of interest: www.qcwg-wake.online

Quantum Computing
Fall Semester (3)
PHY 655
PHY 655 Exotic Materials
An advanced, fast paced, focused course on the dimensionality and topology of Quantum Materials Structures. This course is an excellent 3rd semester to the undergrad. + grad. solid state physics sequence.
The course is taught using an open lecture format with no exams and only HW assignments. Lectures are based on Dr. Carroll's text on Quantum Materials

Exotic Materials
Fall Semester (3)
PHY 658
PHY 658 Kinetics of Materials
The fundamentals of non-equilibrium thermodynamics in solids. The basic theory of phase transitions, Onsager, and a number of exotic examples from liquid crystals to time crystals will be discussed.
The course is taught using an open lecture structure, with two exams and several HW assignments.

Materials Kinetics

