Topol0gical Matter, Time Crystals, and Quantum Information
Prof. D.L. Carroll
The Carroll research group explores the fundamental roles that dimension, topology, and symmetry play in the emergent properties of condensed matter systems. This is a natural outgrowth of our long history in nano-systems. Explorations of these "quantum materials" sometimes yield opportunities in the development of new technologies. Other times, they may simply instruct us on the deeper meanings and connections in our world. Both of these possibilities, the basic and the applied, are welcomed and embraced by the research team. Through our work, we hope to add our distinctive voice to the truly transformative science of this era. Pro Humanitate
Ongoing Research...
Quantum Information Processing: based on Qubits that utilize the Topological State Stabilization Conjecture
Floquet states: Time Crystals built with 2D chalcogenide manifolds
Onsager Entanglement: Hybrid piezo-thermoelectric and photovoltaic-thermal systems
Organic Device Technologies: AC Organic Light Emitting Devices (FIPELS and FIPEL-lasers) and Organic Photovoltaics
Ionic Conductors: Seebeck effects, advanced battery concepts and desalination/ionic selection technologies.